Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration.
نویسندگان
چکیده
The standard process for preparing the low-molecular-weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield because of the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin's core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity.
منابع مشابه
Low molecular weight heparin improves peritoneal ultrafiltration and blocks complement and coagulation.
OBJECTIVES Clinical studies have demonstrated that the intraperitoneal (IP) complement and coagulation systems are activated in peritoneal dialysis (PD) patients. In animal models, low molecular weight heparin (LMWH) was seen to inhibit peritoneal angiogenesis, and related compounds have increased ultrafiltration volumes after repeated administration to PD patients. The present study evaluated ...
متن کاملPreparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle
Low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle (LMWH-ISL-SLN) was developed for injective application. The morphological observation, particle diameter and zeta potential of LMWH-ISL-SLN were characterized using transmission electron microscopy (TEM) and a Malvern Zetasizer. Its entrapment efficiency (EE) and drug loading (DL) were determined by ultracen...
متن کاملPreparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle
Low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle (LMWH-ISL-SLN) was developed for injective application. The morphological observation, particle diameter and zeta potential of LMWH-ISL-SLN were characterized using transmission electron microscopy (TEM) and a Malvern Zetasizer. Its entrapment efficiency (EE) and drug loading (DL) were determined by ultracen...
متن کاملIdentification of the Major ACE-Inhibitory Peptides Produced by Enzymatic Hydrolysis of a Protein Concentrate from Cuttlefish Wastewater
The aim of this work was the purification and identification of the major angiotensin converting enzyme (ACE) inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate recovered from a cuttlefish industrial manufacturing effluent. This process consisted on the ultrafiltration of cuttlefish softening wastewater, with a 10 kDa cut-off membrane, followed by the hydrolysis with ...
متن کاملOligosaccharide mapping of low molecular weight heparins: structure and activity differences.
Low molecular weight heparins from a variety of commercial sources were examined. These had been prepared by several methods including peroxidative cleavage, nitrous acid cleavage, chemical beta-elimination, enzymatic beta-elimination, and chromatographic fractionation. The molecular weight and polydispersity of these low molecular weight heparins showed greater differences than were observed f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of pharmaceutical sciences
دوره 103 5 شماره
صفحات -
تاریخ انتشار 2014